Joint Capped Norms Minimization for Robust Matrix Recovery
نویسندگان
چکیده
The low-rank matrix recovery is an important machine learning research topic with various scientific applications. Most existing low-rank matrix recovery methods relax the rank minimization problem via the trace norm minimization. However, such a relaxation makes the solution seriously deviate from the original one. Meanwhile, most matrix recovery methods minimize the squared prediction errors on the observed entries, which is sensitive to outliers. In this paper, we propose a new robust matrix recovery model to address the above two challenges. The joint capped trace norm and capped `1-norm are used to tightly approximate the rank minimization and enhance the robustness to outliers. The evaluation experiments are performed on both synthetic data and real world applications in collaborative filtering and social network link prediction. All empirical results show our new method outperforms the existing matrix recovery methods.
منابع مشابه
A Weighted l1-Minimization for Distributed Compressive Sensing
Distributed Compressive Sensing (DCS) studies the recovery of jointly sparse signals. Compared to separate recovery, the joint recovery algorithms in DCS are usually more effective as they make use of the joint sparsity. In this thesis, we study a weighted l1-minimization algorithm for the joint sparsity model JSM-1 proposed by Baron et al. Our analysis gives a sufficient null space property fo...
متن کاملJoint Schatten p - norm and p - norm robust matrix completion for missing value recovery
The low-rank matrix completion problem is a fundamental machine learning and data mining problem with many important applications. The standard low-rank matrix completion methods relax the rank minimization problem by the trace norm minimization. However, this relaxation may make the solution seriously deviate from the original solution. Meanwhile, most completion methods minimize the squared p...
متن کاملEfficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization
Feature selection is an important component of many machine learning applications. Especially in many bioinformatics tasks, efficient and robust feature selection methods are desired to extract meaningful features and eliminate noisy ones. In this paper, we propose a new robust feature selection method with emphasizing joint `2,1-norm minimization on both loss function and regularization. The `...
متن کاملEfficient and Robust Feature Selection via Joint l2,1-Norms Minimization
Feature selection is an important component of many machine learning applications. Especially in many bioinformatics tasks, efficient and robust feature selection methods are desired to extract meaningful features and eliminate noisy ones. In this paper, we propose a new robust feature selection method with emphasizing joint `2,1-norm minimization on both loss function and regularization. The `...
متن کاملRobust Unsupervised Feature Selection
A new unsupervised feature selection method, i.e., Robust Unsupervised Feature Selection (RUFS), is proposed. Unlike traditional unsupervised feature selection methods, pseudo cluster labels are learned via local learning regularized robust nonnegative matrix factorization. During the label learning process, feature selection is performed simultaneously by robust joint l2,1 norms minimization. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017